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Exper imenta l ly  obtained data a re  used to demons t ra te  the advantages of a gas  suspension as a heas  
agent. 

The quest ion of intensifying heat t r a n s f e r  by using h e a t - t r a n s f e r  agents of the "gas - so l id s "  type is a very  topical  
one. There fore ,  the study of the cor responding  heat t r ans f e r  and hydrodynamics  in channels  of var ious  sect ions  and, 
in par t icu la r ,  annular channels is of considerable  p rac t i ca l  in te res t .  

Whereas  the re  have been a number  of invest igat ions  of the hydrodynamics  and heat t r a n s f e r  of gas suspensions  in 
c i r c u l a r  channels  ([1-5],  etc.  ), the authors a re  aware  of only two papers  dealing with heat t r ans f e r  in annular channels 
[1, 3], while t h e r e  is p rac t i ca l ly  no informat ion concerning the cor responding  hydrodynamics .  Our r e s e a r c h  r e l a t e s  to 
the exper imenta l  study of the heat t r ans f e r  and hydrodynamics  of an a i r -g raph i t e  flow in annular channels.  

The exper imenta l  apparatus (Fig. 1) took the fo rm of a c losed loop. The exper imenta l  sect ion was an annular 
channel with d2/d ~ = 2.63; 1.75 and 1.47 and a length of 1.5m. The equivalent  d i a m e t e r s  were  19.6, 13.6, and 10.3mm, 
respec t ive ly .  We s imula ted  both ex te rna l  heating and heating by an internal  source .  The exper imenta l  method was 
based on the s teady-s ta te  r eg ime .  The concentra t ion was measu red  by the cutoff method, checked in re la t ion  to the 
charge  and in ce r ta in  expe r imen t s  the heat balance of the heat exchanger .  The average  d iscrepancy  was 7-8%. The 
g r a p h i t e - a i r  flow ra te  was m e a s u r e d  by the the rmal  m a r k e r  method [10] and checked against  the flow ra te  de te rmined  
f r o m  the balance for  the heat  exchanger  (the d i sc repancy  did not exceed 6-7%). The heat flux was measu red  f rom the 
e l ec t r i ca l  power consumption,  taking into account the l o s s e s  through the insulation, and checked against  the change in 
the flow enthalpy in the exper imenta l  channel. 

The exper iments  were  pe r fo rmed  on natural  graphi te  (3/ = 2170 k g / m  3) at an average  par t ic le  s ize  on the o rder  
of 10 p. The pa r t i c l e  s ize  was de te rmined  by the exper imenta i  apparatus .  

The method was f i r s t  t e s ted  on pure air ,  as a resu l t  of which it was found that the average  heat t r a n s f e r  for  air  
in annular channels at 3000 -< He ~ 30 000 (co r rec t  to 3-4%) conforms  with the fo rmula  p resen ted  in [7]: 

Nug = n Re ~ .8 (d2/dl)O,45, (1) 

where  n = 0.018 for internal  heating and n = 0.0168 for  external  heating at d2/d 1 = 2.63. At d2/d t = 1.48 and 1.75 the 
d i f fe rence  in heat t r a n s f e r  for the different  methods of heating did not exceed 3-4%, which is in agreement  with the 
data of [6]. The hydrodynamic data in this reg ion  a re  per fec t ly  sa t i s f ac to r i ly  desc r ibed  by the Darey fo rmula  

Xf~ = 0.316 Re -~ . (2) 

2300 the exper imenta l  h e a t - t r a n s f e r  data a re  sa t i s fac to r i ly  desc r ibed  by the In the l aminar  r e g i m e  1300 < Re < 
fo rmula  [7 ] 

. \ / w c p  o.4~ 
Nug= / ~ - )  Gr~176176 (3) 

for  ex terna l  heating at d2/d 1 = 1.48 and 1.75, and the hydrodynamics  by the fo rmula  

~. fr = 64/Re. (4) 

tn re la t ion  to the g r a p h i t e - a i r  suspension,  we invest igated the effect of the flow veloci ty and the solids concentra t ion on 
the convect ive  heat t r a n s f e r  f rom the heated wall to the suspension,  the p r e s s u r e  los ses ,  and the effect  of the 
equivalent  d i ame te r  and heat flux. As the c h a r a c t e r i s t i c  dimension we took the hydraul ic  d i ame te r  and as the 
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c h a r a c t e r i s t i c  t e m p e r a t u r e  the mean flow t empera tu re .  The pr incipal  p a r a m e t e r s  were  var ied  over  the following 
ranges :  concentrat ion f rom 0 to 325 kg/kg ,  flow veloc i ty  f rom 2.0 to 29 m/ sec ,  flow t empera tu re  f rom 53 to 195 ~ C, 
heat flux f rom 4.9.103 to 20.6.103 W/m 2. 

F L 

Fig. 1. Diagram of exper imenta l  loop: 1) ro t a ry  air  b lower;  
2) exper imenta l  sect ion;  3) heat  exehanger ;  4) i n t e rcep to r ;  
5) hydrodynamie seet ion;  6) f eede r ;  7) t he rm a l  m a r k e r  

sect ion;  8) outlet valve.  

The resuI t s  of the exper iment  were  c o r r e l a t e d  in c r i t e r i a l  fo rm,  as the r a t io  of the h e a t - t r a n s f e r  coefficient  of 
the d i s p e r s e  flow to the cor responding  quantity for  the pure  gas. (Fig. 2) 
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Fig. 2. Genera l ized  concentra t ion  dependence of heat t r a n s f e r  
for  ex te rna l  heating: a) d e = 10.3 m m  b) 13.6; c) 19.6, 

A = lg[(Nuf/Nug - 1)Re ~ (d2/dl)-~ ]. 

The c o r r e l a t i o n  of the exper imenta l  data gives  an empi r i ca l  r e la t ion  for  calculat ing the mean heat t r a n s f e r  f rom 

the heated wall to the ascending g r a p h i t e - a i r  flow: 

Nuf/Nug = 1 -I- c Re "~ ~n (d~/dl)0.95, (5) 

where  for  external  heating c, m, and n take the following values:  

a) for  the region 0.6 < ~ < 4, 4000 < Re < 26000 

c = 244; rn - --0.8; n = 0.67; 

b) for  4 < ~ < 45, 2800 < Re < 12000 

c=112 ;  m = - - 0 . 7 ;  n = 0 . 6 ;  

c) for  45 < ~ <  65, 2000 < Re<8300 
c = 151; m = - - 0 . 7 ;  n =0.5; 
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d) f o r  6 0 < 9 <  120, 1800 ~ Re ~ 7400 

c = 58; m . . . .  0.7; n -- 0.75; 

e) f o r  120 ~ !x ~ 325, 1 3 7 0 ~ R e ~ 4 3 0 0  

c = 0.8.10~; m = - -  0.7; n . . . .  0.75. 

In t h e  c a s e  of i n t e r n a l  h e a t i n g ,  the  hea t  t r a n s f e r  is s o m e w h a t  h i g h e r ,  wh ich  is  r e f l e c t e d  in an i n c r e a s e  in the  
e x p o n e n t  of d l / d  I f r o m  0.95 to  1.05.  None  of t he  f o r m u l a s  h a s  an e r r o r  g r e a t e r  than~:9%.  Wi th  an e r r o r  of  :L12% the  
e x p e r i m e n t a l  d a t a  f o r  e x t e r n a l  h e a t i n g  in t h e  r e g i o n  3 < p < 120 and  2300 < Re < 26 000 can  b e  r e p r e s e n t e d  by a s i n g l e  
f o r m u l a :  

Nuf 
Ntlg 

-- 1 -F t07Re -~ ~t~ ~ (6) 

The experimental data on the heater hydrodynamics (Fig. 3) are described by a relation of the type 

h Pf 
- 1 + k ~ ,  (7)  

APg 

w h e r e  t he  e x p e r i m e n t a l  c o e f f i c i e n t  

k = C I~e n (d2/d l )  0.145. (8) 

The  v a l u e s  of c and  n w e r e  d e t e r m i n e d  in f o u r  r e g i o n s  of p and  Re:  

a) f o r  0.6 ~ ~t < 4, 4000 ~ Re ~ 26000 

c = 0.85; n - - - - 0 . 2  ( e r r o r  : 13%); 

b) f o r  5 < ~ t < 4 5 ,  2800 < Re < 1 2 0 0 0  

c = 1.08; n =  - -0 .182  ( e r r o r  _ 9.2%); 

c) f o r  4 5 < ~ < 1 2 0 ,  2300 < Re < 8300 

c = 1.79; n = - - 0 . 2 5  ( e r r o r  : 9.8%); 

d) f o r  1 2 0 < ~ < 3 2 5 ,  1 3 7 0 < R e ~ 4 3 0 0  

c = 0.445; n = - - 0 . 0 8  ( e r r o r  :Z 12.7%). 

The  h y d r o d y n a m i c s  d a t a  c a n  a l s o  be  r e p r e s e n t e d  by  a s i n g l e  f o r m u l a  o v e r  t he  e n t i r e  r a n g e  of c o n c e n t r a t i o n :  

0 82 1 82 l h Pf = 0.0155 ~f' wf" Z (d#dO-~ N/m2  (9) 

f o r  23 -< 7fwf -< 1200 kg/m z. sec  o r  f o r  t he  t u r b u l e n t  r e g i m e  

h Pf _ O.096 ( ~ )o.2~ (l + ~)o.82 (d~/d~)_o.2 (~g ?g)O,o 7 
A Pg ( lO)  

wi th  a m e a n  e r r o r  of :L 11.2%. The  h y d r o d y n a m i c  e q u a t i o n s  w e r e  o b t a i n e d  f o r  a s t a b i l i z e d  s e c t i o n  on t h e  o r d e r  of 
8 4 0 m m .  In a l l  t h e  h e a t  t r a n s f e r  and  h y d r o d y n a m i c  c a l c u l a t i o n s ,  i t  w a s  a s s u m e d  t h a t  t h e r e  w a s  no  i n t e r p h a s e  s l i p  and 
t h a t  t he  f l o w - r a t e  c o n c e n t r a t i o n  w as  e q u a l  to  t h e  m a s s  c o n c e n t r a t i o n  ( t h i s  is  qu i t e  p e r m i s s i b l e  f o r  m i c r o n - s i z e  
p a r t i c l e s ) .  

An  a n a l y s i s  of  t he  r e s u l t s  b a s i c a l l y  c o n f i r m s  p r e v i o u s  i d e a s  about  the  h e a t  t r a n s f e r  of d u s t l a d e n  f lows  [1, 2] and, 

in p a r t i c u l a r ,  t h e  e x i s t e n c e  of a c r i t i c a l  c o n c e n t r a t i o n  # = 4 0 - 5 0  k g / k g  and  an o p t i m u m  c o n c e n t r a t i o n  in t h e  r e g i o n  
p = 1 1 0 - 1 2 0  k g / k g .  T he  e x i s t e n c e  of " c r i t i c a l "  c o n c e n t r a t i o n s  s u g g e s t s  an i n t e r n a l  r e c o n s t r u c t i o n  of t h e  f low, a c h a n g e  
in i t s  a e r o d y n a m i c s  and  a c h a n g e  in  t h e  r a t i o  of t h e  t h e r m a l  r e s i s t a n c e s  of t h e  b o u n d a r y  l a y e r  and  t he  f low c o r e  
d e p e n d i n g  on the  s t a t e  of s a t u r a t i o n  of  t he  f low wi th  s o l i d s .  At  p < Pc r  ~- 45 k g / k g  hea t  t r a n s f e r  i s  i n t e n s i f i e d  by  t he  
a c t i o n  of t h e  p a r t i c l e s  on the  b o u n d a r y  l a y e r  and  b e c a u s e  t h e  p a r t i c l e s  p a r t i c i p a t e  in r a d i a l  h e a t  t r a n s p o r t ,  b e i n g  
e n t r a i n e d  by  t h e  t u r b u l e n t  f l u c t u a t i o n s .  On t r a n s i t i o n  t h r o u g h  the  c r i t i c a l  c o n c e n t r a t i o n  ( r e g i o n  IV) t he  f low b e c o m e s  
m o r e  r e s t r i c t e d ,  l a m i n a r i z a t i o n  t a k e s  p l a c e ,  the  f low v e l o c i t y  f a l l s  and  c o n s e q u e n t l y  t h e  p a r t  p l a y e d  by  Nug 
d i m i n i s h e s .  In t h e  r e g i o n  tz > 120 ( r e g i o n  V) t h e  p r i n c i p a l  r o l e  i s  p l a y e d  by the  t h e r m a l  r e s i s t a n c e  of t he  f low c o r e ,  
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which tnc reases  with #, thus reducing the rate  of heat t r ans fe r .  In the region p = 110-120 kg /kg  maximum heat 
t r ans fe r ,  at which Nuf/NUg reached 16-20, was observed. Our study of the hydrodynamics also showed that there  are 
severa l  different regions  or influence of the concentra t ion on the hydrodynamic r e s i s t ance  of the channel and that the 
concentra t ion is decisive in the p r e s s u r e  loss  calculat ions.  The coefficient k as a function of Re, d2/d 1, etc. actually 
var ied  between 0.1 and 0.4 and depended only r a the r  weakly on the velocity. A cor re la t ion  of the exper imental  r e su l t s  
by analogy with [3] gives sat isfactory agreement  with a cor re la t ion  based on the Gastersfiidt equation, but the physical  
s ignif icance of the p rocesses  is not c lear ly  ref lected,  which is one of the shor tcomings of this method: 
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Fig. 3. P r e s s u r e  drop ra t io  as a function of concentra t ion 
( a - c - - s e e  Fig. 2): 1) according to Schluderberg 's  formula  
for  tubes [3]; 2) according to the fo rmula  of Hawes et al. 

for  n i t rogen at a tube inside d iamete r  of 12.7 m m  [4]. 

Comparison with the hea t - t r ans fe r  data of other authors (Fig. 4) showed fa i r ly  good agreement  with the data of [3]. It 
was less  easy to compare  our data with those of [1] for external  flow since the par t i c les  employed were l a rge r  (140 p or 
more),  but it should be noted that our data lie above those of [1], which re f lec t s  the g rea t e r  intensifying role  of the 
fine par t ic les  and the fact that the exper iments  in [1] were concerned with cooling in an annular  channel,  whereby 
graphite deposits  may be formed on the cold wall at low t empera tu re s .  

The hydrodynamics  (Fig. 3) data are  in fa i r ly  good agreement  with those of [3-5] for finely d i spersed  flows in 
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Fig. 4. Comparison of hea t - t r ans fe r  data with the data 
of other authors (Re = 7 �9 10-3): 1) BakhtiozinTs and 
Oorbis '  fo rmulas  [1] for par t ic les  measu r ing  140 and 
165 p and de = 20 mm;  2) f rom Schluderberg ' s  formula  
for n i t rogen at d2/d I = 1.32 [3]; 3) our data for d e = 

= 19.6 ram; 4) according to [4]. 

As an example, the re la t ions  obtained made it possible to ca r ry  out the rmal  calcula t ions  by the simplif ied method 
of [9-11] for the s team genera tor  and reac tor  of a two-loop atomic power plant with a he l ium-graphi te  hea t - t r ans fe r  
agent. In the calcula t ions  it was assumed,  in accordance with [5], that the effect of the proper t ies  of the gas phase is 
taken into account by int roducing the ra t io  et/Cpg. For  compar ison we made s imi l a r  calculat ions for pure hel ium 
assuming the same the rmal  capaci t ies ,  the same design and the same s t ruc tura l  ma te r i a l s .  For  example, at an 
e lec t r ica l  capacity of 200 mW for a s team genera tor  of the " tube- in- tube"  type the gain in heating surface with a 
he l ium-graphi te  suspension (at P = 20 bar) was by a factor of 4.5, while the pumping losses  were sma l l e r  by a factor 
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of 5 than for a steam generator with helium at 60 bars. A similar comparison for heterogeneous thermal-neutron 

reactors showed that the core dimensions can also be reduced by a factor of 5, and the pumping losses by a factor of 

6. The efficiency of the plant increases by 3-4%. In both cases, the comparison was carried out for variants selected 

from calculations of the optimum concentration, diameter, and velocity. Thus, for example, for the steam 

generator with a suspension, the values of these quantities were: # = I00 kg/kg, d e = 39ram, and wf = 10m/sec, while 

for the reactor at the same concentration the core velocity was 6 m/sec and the equivalent diameter 11.5 mm at a 
channel length of 4.8m and t~ v = 525 ~ C. 

In conclusion, we note that the calculated data correspond to the r e su l t s  of the calculat ions given in [1, 3]. 
Moreover,  as our exper iments  and the exper iments  in [2-5] (with m i c r o n - s i z e  graphite par t ic les)  showed, there  is  
almost  no abras ive  wear. The suspension is eas i ly  displaced,  regulated and bypassed.  

N O T A T I O N  

Re, Nug, APg, kfr are the c r i te r ia ,  p r e s su re  losses ,  and fr ic t ion factor  for pure gas;  Nuf, APf are  the Nusselt  
number  and fr ic t ion p r e s s u r e  losses  for suspension flow; 7f and wf are the specific weight and flow velocity of the 
suspension;  d 2, d 1, and d e are  the outside, inside, and equivalent channel d i ame te r s ;  p is the mass  concentrat ion,  
kg /kg ;  ~ is the dynamic viscosi ty.  
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